0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 1 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 787 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 159 ms)
↳18 CpxRNTS
↳19 FinalProof (⇔, 0 ms)
↳20 BOUNDS(1, n^1)
merge(x, nil) → x
merge(nil, y) → y
merge(++(x, y), ++(u, v)) → ++(x, merge(y, ++(u, v)))
merge(++(x, y), ++(u, v)) → ++(u, merge(++(x, y), v))
merge(x, nil) → x [1]
merge(nil, y) → y [1]
merge(++(x, y), ++(u, v)) → ++(x, merge(y, ++(u, v))) [1]
merge(++(x, y), ++(u, v)) → ++(u, merge(++(x, y), v)) [1]
merge(x, nil) → x [1]
merge(nil, y) → y [1]
merge(++(x, y), ++(u, v)) → ++(x, merge(y, ++(u, v))) [1]
merge(++(x, y), ++(u, v)) → ++(u, merge(++(x, y), v)) [1]
merge :: nil:++:v → nil:++:v → nil:++:v nil :: nil:++:v ++ :: u → nil:++:v → nil:++:v u :: u v :: nil:++:v |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
merge
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
nil => 0
u => 0
v => 1
merge(z, z') -{ 1 }→ x :|: x >= 0, z = x, z' = 0
merge(z, z') -{ 1 }→ y :|: y >= 0, z = 0, z' = y
merge(z, z') -{ 1 }→ 1 + x + merge(y, 1 + 0 + 1) :|: z = 1 + x + y, z' = 1 + 0 + 1, x >= 0, y >= 0
merge(z, z') -{ 1 }→ 1 + 0 + merge(1 + x + y, 1) :|: z = 1 + x + y, z' = 1 + 0 + 1, x >= 0, y >= 0
merge(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
merge(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
merge(z, z') -{ 1 }→ 1 + x + merge(y, 1 + 0 + 1) :|: z = 1 + x + y, z' = 1 + 0 + 1, x >= 0, y >= 0
merge(z, z') -{ 1 }→ 1 + 0 + merge(1 + x + y, 1) :|: z = 1 + x + y, z' = 1 + 0 + 1, x >= 0, y >= 0
{ merge } |
merge(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
merge(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
merge(z, z') -{ 1 }→ 1 + x + merge(y, 1 + 0 + 1) :|: z = 1 + x + y, z' = 1 + 0 + 1, x >= 0, y >= 0
merge(z, z') -{ 1 }→ 1 + 0 + merge(1 + x + y, 1) :|: z = 1 + x + y, z' = 1 + 0 + 1, x >= 0, y >= 0
merge(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
merge(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
merge(z, z') -{ 1 }→ 1 + x + merge(y, 1 + 0 + 1) :|: z = 1 + x + y, z' = 1 + 0 + 1, x >= 0, y >= 0
merge(z, z') -{ 1 }→ 1 + 0 + merge(1 + x + y, 1) :|: z = 1 + x + y, z' = 1 + 0 + 1, x >= 0, y >= 0
merge: runtime: ?, size: O(n1) [z + z'] |
merge(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
merge(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
merge(z, z') -{ 1 }→ 1 + x + merge(y, 1 + 0 + 1) :|: z = 1 + x + y, z' = 1 + 0 + 1, x >= 0, y >= 0
merge(z, z') -{ 1 }→ 1 + 0 + merge(1 + x + y, 1) :|: z = 1 + x + y, z' = 1 + 0 + 1, x >= 0, y >= 0
merge: runtime: O(n1) [2 + z], size: O(n1) [z + z'] |